For example, when one competition asked teams to predict whether a student would drop out during the next ten days, based on student interactions with resources on an online course, there were many possible factors to consider. Teams might have looked at how late students turned in their problem sets, or whether they spent any time looking at lecture notes. But instead, MIT News reports, the two most important indicators turned out to be how far ahead of a deadline the student began working on their problem set, and how much time the student spent on the course website. These statistics weren’t directly collected by MIT’s online learning platform, but they could be inferred from data available.